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Abstract

systemis deispite dleciles oIi lescitlul ilid signifciit w1viiccs ini pl'oNtIclii [fol-I Ittioll.
slo iliiis1111 oilliit ugpower. We~ posit, that significint piopi,ess caln Ihe nwdiie I)v

science midii hu-ie-scife iStlifItedl (IliIliltin[g. SIICII chimis halve ])ee(It Illade blei ;1i1d
so it is quite reasoinable to a)sk whiA are the new ideis; we hiing to the tol e thia
mig ht make adifference this time around. From a theoiretical stiidpoiiit, oor piinmr v
poinit of depi-irt.ure from i cimuen t piiiticee is omr rel ian ce oil exp)( loig t im ie in orler toi
hull alm uthieni'se illi)(at fll)]( I Isuip \r ised ploNle l illto ;I lou;ilsk ondl-ilii~iI i
pliaulsibly traictablle. Ieitiliil pl-olduli. F-ronti a pragililtic pelsp)ecive. ou11 systeill achii-

tectm-e follows what we know of cor-ticail nieuroanatonmy and( privides at solid follndatioll
forscitaltle hi erarch IicnI in ferience. Tiscominittioiniof fea imnres pioidetIs tI l ieMI(,Aei-ik
tor, iimptlemenitin it wOic longe ot iobust object-i-ecogniitioni caplil iit ics.
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Final Report

Funding for this graIlt was ('ut off a few motths after it btgun with tie consequence t Ih;t

work was barely begin on the core problems described in statement of work. Nonethel(ess.

work has proceeded on related problems funded by other. non-governmental sources, aind

so it makes sense for this final report for this award to provide a broader survey of tlie

related work and the prospects for its success in the coming years. We start with a little

history which sets the stage for the current resurgence in interest in brain-like computing

architectures.

In July of 2005, Toin De'an, the principal investigator for this grant presented a papir

at AAAI entitled "A Computational Model of the Cerebral Cortex" [5]. The paper (he

scribed a graphical mo(lcl of the visual cortex inspired bY David Niumford's computatiotial

architecture [21, 22, 17]. At that same meeting, Jeff llHaxkius gave an invited talk entitled
"From AI Winter to Al Spring: Can a New Theory of Neocortex Lead to Truly Intelligent

Machines?" drawing on the content of his popular book On Intelligence [11]. A month
later at IJCAI, Geoff Hintlon gave his Research Excellince Aw;rd lecture entitled "\ht

kind of a graphical model is the brain?"

In all three cases, the visual cortex is cast in terms of a generative model in which cii-

seibles of neurons are modeled as latent variables. All three of the speakers were optiiist ic
regarding the prospects for lliziiig useful. siologica ll-i s i red svstelms. In the illtc(T\ (I
ing two years, we have learned a great deal about both the provenance and the practi(cd
value of those ideas. The history of the most important of these is both interesting anod

helpful in understanding whether these ideas are likely to Yield progress on some of the
most significant challenges facing AL.

Are we poised to make a significant leap forward iin understainding computer and bio-
logical vision? If so., what are the main ideas that will fuel this leap forward and are Ihw

new or recycled? How important is the role of Moore's law in our pursuit of human-level

perception? The full story delves into the role of time, hierarchy, abstraction, complexity,
symbolic reasoning, and unsupervised learning. It owes much to insights that have been

discovered and forgotten at least once every other generation for many decades.

Since J.J. Gibson [9] presented his theory of ecological optics, scientists have followed his
lead 1)y trying to explain irce-ption in terms of the inv;riuits that organisms learn. I'etlel
F61diAk [7] andi more recentlv Wiskott and Se owski [33 suggest that we learn invariance,s

from tempnld in)ut se(qu 1li,us )y exploitiig the fact th;t sensory input ten(ls to \'%; V

quickly while the enviroinent we wish to model changes gradually. Gestalt psychohogist,

and psychophysicists have long studied spatial and temporal grouping of visual objects aiid

the way in which the two operations interact [15]. and there is certainly ample evidence to

suggest conicret e algoritilill.".
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The idlea of hiier;rlc v pihl\- ) (ceitilA role inl so niaii iiscipiics it is fiiitless lo t raIl
its ori-~ins. Even ats flubel and WVeisel iutiraveled the hirst lirers (it thle Visual c'ortex. tHew

O'1"direct eVidlieii(or suieh liicrIali(ad organizatioii is siii toi this (i,1iiv'id iiiil iilii
visionl 1hos vet to actiually learii hiimrchicis of more tiai al couiple hivers dlespiite comipelilii

ol-liits for their lt ilitvN [31I].

1braice Barlow [t] point ed I olit mo re than forty years it"i) that stnrate-ics tor cod11ing

vistual informiation should take advantagec of the statist ical reguihirities in natnural iniages.
This, ideo is the fotiilatioili fir wiirl (ii ,,parse repiresinittiowi in nimliii liearniii oiild

Br, the time inforinat ion reaehes thle p)rimarY visual cortex (V I) , it hias alreaudy gone(
tHrough several stages ot proicessinig ii the( retina aiii lateral gpiiiciilatc. F-ollowinig thle
lead of Hubel aiid NViesel, iiaiir scieiitists bl)eieve that the outpiiOt of' VI can be miodeled
aus a tuned baud-paiss filterT baink. Thel( (comlponent features or bai, for this representation
are called Gabor filtecrs -- n iathleniaticalily, a Gabor filter is a two-im iueiisional Gauissiani
iiiodnula,ted iby a colipllex siliuisoiid aniill are tuned toi rcspoiijd t,o orit iie dark liars againlst
at light background (or, alt,criamiveir' , light bars against a dark Naekgrounid). The story of'

why scientists caine to this coniilusionu is fascinating, but, tin) conci(lusioni ma ' have bieei

prlllt c miore re(cnt \11l Giksugeis(abor filters, itkoiiit 1,i oilx, ihutit 2t)'/ of Ile
voiri;ulcce o bservedillii the ou(1tpit of' VI t!21!

Were sure that tenipo(ralI andi spat ial ivariants. IfierarchiY. levieis (if ini cosiniglY abstract
temtuires, uiisuiperviseid learnip of' iiiwgc st.atistics anid othiir (liv idics t hat ha e li
floating around for decades iust he pairt of the answer, but miachinre vision still fails far
short of human capability' in most respects. Are we on the threshold of a b)reakthrough and
if so) what will push uts t hroudgi thle final b)arriers?

Temporal and HierarclIical Structure

The primate cortux serves iianimiv functions and miost. scienitists wouil(d agree that, we're
(discovered only a snmall traction of its secrets. Let's suppose that, our goal is to bluildi a
computational niodel of the vemitral visual pathway, the neural circuitry thiat app)ears to lie
largely responsibl]e for ricogiinti tcud ohiiects are ptresenit iii iiiir, visiiii hfild A suiccessfuli
modlel would, among other things,, allow us to create a video search platforin with the same

(11ilahity midt Scope tlihat Goo,"ic il lidiI YAtool provide for c pel c' Do I)i W' 1laive th lccciIIs il

p1mae tii succeed illiil( l exi two) to livec Yeiirs?

lIi iiianr areas ofi sciciacc ;id ciiginiecriiig, tine is i initiegrail toi th lie iscrilptionii i tie(

ceiitral probleum that it camnit he igmiored . Certainly' this is thle case in spicechi unmiderstandii-
in-g, aitorniated comitrol. andl noist areais oif signal processing. Br coiitrast. iii most areas of
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safely ignore until we've figured out how to interpret static images. The prevailing wisdoul
is that time will only make the problem of recognizing objects and understanding scenes
more difficult. A similar assumptiou has influenced much of the work in coinputatiooiil iwu-
roscience, but now that assumption is being challenged. There are a number of' proposals
that suggest time is an essential ingredient in explainiiig human perceptiou [7, 6. 12, 33],
The cominoii theme uniting these proposals is that the perceptual sequences we experience
provide essential cues that we exploit to make critical discriminations. Consecutive san-
pies in at audio recording or frames in a video sequence are likely to be examples of the
same pattern undergoing changes in illumination, position, orientation, etc. The exotiiples
provide exact I t le viatiou required to train 11,odels al)Ie to recognize patttis illv;,li nlat

with respect to the observed transformations.

There is an even more compelling explanation when it comes to learning hierarchies of
spatial and temporal features. Everyone agrees, despite a lack of direct evidence, that the
power of the primate cortex to learn useful representations owes a great deal to its facility in
organizing concepts in hierarchies. Hierarchy is used to explain the richness of language aid
our extraordinary ability to quickly learn new coucepts from only a few training exaitmtples.

It seems likely that learning such a hierarchical representation from examples (input and
and output pairs) is at least as hard as learning polynonfial-size circuits in which the sub-
concepts ale rcpicsc1itcd ias bounded-input book2an functions. Kearns and \aihow sIhoW ii

that the problem of' o h,;niiing )olynomial-size circilit,s (in Valiant's probably atppro.r'm t(Iy
correct leantiig iodel) is infeasible given plausibkd ciryptograthic limitations [I li

However. if we are provided access to the inputs and outputs of the circuit's intertl
subconcepts, then the problem becomes tractable [27]. This implies that if we had the
"circuit diagram" for the visual cortex and could obtain labeled data, inputs and outputs,
for each component feature, robust machine vision might become feasible. Instead of labls.
we have knowledge based on millennia of experience summarized in our genes coial liiig
us to transform an otherwise intractable unsupervised learning problem (one iu whi(h the
training data is unlabeled) into a tractable sein-supervised problem (one in which we can
assume that consecutive samples in time series are more likely than not to have the same
label).

This property called temporal coherenct is the basis for the optimism of several r -
searchers that theY can succeed where others have failed.' If we're going to iiake pro,ress.
temporal coliereice has to provide some significanit leverage. It is iinportaut to io liz.
however, that exploiting temporal coherence does not cot)pletely eliminate cOmiplexil iii

'Or, at least, it is one half of the basis for betting on the success of this approach, and th hlalt on
which we hve concentrated. The other half relies on the fact that machines, like humans, can intervene
in the world to resolve ambiguity and distinguish cause from correlation. Intervention can he as simhple i,

exploiting )a,t1lliX I, ;wsl iccidental aliglnelits I dt i, list bu lt parallel lines.



honriig Wiearchical repiresenitatimis- Kniowiiig that conown(itAve suiiples an, lihel I" hiave

the :,ianic label is hll"Imiit. )11we are( still left xvith the task of' segineniting t he l ine Series

ito 'St lbst'(11Iice('s lilviiig i lie soillic Li al. a ploh iii rehitced to Iearilinig II N NI- 5

Learning Inivarianit Features

It's Oirdl tiocinc up with a trick that inatire aInWt alreadyv disowkercdl. AMil while
nature is rehuctant, t,o reveal its tricks, decades of machine vision researchers 1ave coiine upl
with thecir owni. Whlether 0r lnt we have found neuiral analogs for tIhe most [powerhul of'
these" a pragmiat ic attitude (dictates adAKig anid adopting Olemi. where p"itislle. D)avid

Lwe 1<S liet> lev(Qw pd an clMvtvc ay"Oki Wt Mumo x icling Nige cat" AW S lc 'T l
(for scale iiivariaiit, [cature trmnisforni). The algorithin involves searching iii scale space for
leaobirts in the Worn of small image patches that canl be reliably recoveredl ii nvel images.
1tw ~ e Watin s are i iNNI I le wordIs ini a dhtI Puilary to categorike iimages, aid ndli iiiage is

smiiiiark" Zi(I as an miiiion(ler" I c-ol11ectioi of snuch p)ictun! wordIs.

The basic idlea of using an unnord ered collectioni of features to supplort iinaiince has
beenl around for'soiiie time. It even has at fairly convincimig story inisuppiliort of its, biological

plmauisibiPlity 1261.2 However, balancing inivariance (which encourages false positives) ;gaidist
selectivit'y (which encourages fase negWiatie) requires considerable (are to get right. For
ill auice. oine approach ar-gues thait overlapping features which correstijn iii thinle recep-
tive fields of cortical linurons avoidl false positives 13Ii]; another applro)achm provides greater
sehtitlivitY hY 1w n jiig iiio cOMitO geowivir relationships mioiig iel 1c301wol it.

Lowes trick ofmmseAhng iin scale space hats iil analog, in iiinig spla jotelipola id eatunres
iii video) I(j. Fiindinig corresponiiniig points in consecut,ive fr-amecs of a, %idco is,- rclnt,ivel 't,
ea,sy for points associated with patches that stan out frm their surrnniidmiig context.
We can exploit this fact to track patches across multiple frames. This methlodi idlentifies
hmatlis thatqtire pewsisteAnt il(iii. IliiidditiPn. it learns, to account for 1 ;ltiml I varialtionl in
Wthierwise distinctive features. There are cells in the retina, lateral genlat eandii p6imaxy
visual corex whose rmqA[&tv lields s"an space andh timle and are calpable. ini t heory, of
p)erfigming this sort of tracking [I]. Emactly how these spat iotenli ralI recepitors are used
to extract shape, distiniguish figure from ground andl infer movenient, is unkinown. but
[learly he ire is amrloither phiacp wheire tinle p1days a key role ini Iihu man juv14M. t iii

Why the ventral visual pathway?

Otir hfocirs is oii V I aiid the \Wnmil \ismad pathiway, that, hait of* V2 f' tsb ot
idenutifyvinig whtat is im thle visul liHL The imAivat ion is th[at thlis seem,, it) he Ol e sweet

spot for relatively uinicontestedl kmowledge conicering braimi funiction m id uiiiierstaniinig
of, what is beiing represenited and hiow it is being Comiputedl. Byv way of conat rast . the

2 ,, a



dorsal visual pathway responsible for tracking the location and motion of objects in

our visual field [101 -_ is less well-studied and presents a more complicated picture. As

an exionple. positional ilfortnation appears to be aflI'O(ted 1)v inotion [32] and (1tciinined

relative to a primary object [2]. Saccades and head noovents tend to change the point of

view and must somehow be integrated with the retinotopically mapped information flowing

through the lateral geniculate nuclei. Both of these present us with problems in how to

integrate disparate information sources, including mixing retinotopic with non-retinotopic

information, a challenging problem for which we presently lack any clear solution (see Rolls

and Stringer [28] for an interesting start).

While we believe VI and the ventral pathway provide u-eful clues for developing art itial

perceptual systems, we are neither so naive nor so ignorant as to be unaware that the brain

still holds many secrets, and our model does not, even account for all the currently extant

data. As mentioned above, Olshausen and Field [2.1] give the somewhat pessimistic estimate

that we presently understand only about 20% of VI's functional behavior. We simply don't

know what the other 80% of the computation is, whether it is important, or what it might
be useful for. On the other side of the coin, we know that attention plays a significant

role in visual perception [25], but we are assuming we can make progress without detailed
understanding of human attentional mechanisms. A similar situation pertains at the level of

neuroanatomv. Our model incorporates a version of feedforward and feedback connections.
but does not presently include lateral connections [191. Again, we believe we calt achieve

some l1lo(iculn of Success without lateral col(01 tiotIS. but we await experi mlental IresIlts
before venturing a definitive answer. The take away (i this is that we expect to adapt our

model in response to shortcomings exposed by exporimentation, but we are aware both of

the gaps in our knowledge of the brain and the discrepancies between our model and what

is presently known about the visual cortex.

Will big ideas or big iron win the race?

Compared with previous approaches, there is one other advantage we have allowing its

to consider models of realistic scale: increased comt)uting power and the where withal to

take advantage of it. The human primary visual cortex (VI) consists of approximately IW9

neurons and 6 x 109 connections [3]. Whereas we have relatively poor data for modeling
individual neurons, despite the press for the IBM / EPFL Blue Brain Project, we are

better positioned with respect to the aggregate behavior of thousands of neurons. Most
of the serious 0coil1ptlt.ational brain models aiin at the level of a cortical hypcr-cobo,m ?I. I

structural unit consisting of 10 10)5 neurons [201. If we assign one processor per lYper-

coltlll1(. a colpulting cluster Nvith 101 process(Ir (ctre's ad acco-tlpamyilng (onliimcittwi,ls

capacity can simulate on the order of 108 neurons. This would be about 10% of V t, and

somewhat beyond the reach of most academic labs, but Google and several other industrial

labs can field resources at this scale and bevond. Working at a smaller scale would risk
('O1founig effect s introd(uced by the scale with tfl*C't',-; of the model itself. \\orking al
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a rel(ist ic scale n1lo-ws Its to focu1s oil th imu-'lo)ll Nlonvoel%(1 dlAyhNig rcsmu"s(Q at myk,i

alows 11s to) tur ai r ioundI experimlenits in minutes or. hours. 1.5 oppoIsed to daYs or weeks.
Thjis tIlalts Wt c'all itilrato (vetr alterntives. whtil will siick- lbe l1(i(55lX, a(lld (Illitie

spalce of'sollit Pons1 ill a WaY nlo t, practical for alt iudei-tesouriedl sYstcni).

ShwItuling dwli brin to achieve huittall-lewel senlsory * \and cogntitive abilities is just. start -
ing to make thle trantsitionl from tantalizing possilbility to practical, enigineered real it ,v. kMak-
ing0 that trannsitioni will take blotht good ideas incluinig venlerable old( ideas and smll(e 11eW

ones - andu heavyo lyt emnptutzing pow~er. While we b elieve the inclusion of Uit, is anl

essenitial eleiienit of a soIlut iln, and ouir miodel offen, primlise of siuccess, we' are awarie thIat

mtore wtaY lie tueqewww"v The exta data oit bramn IitmtAjon is woan,bly sparse. an ("n ourttdcl

mtakes no at tempt to take all kntownt braili futition inito accounit. c.g., at teitiontad inechna-

nisnis. Whtat we (1( htave is a plaitsile miodWl biologically in sp)ired thou.)igh certajinly liot

b)iologically acurawt atid the tools to valate and imiprove it. While man ' of t Ie( ideas

htave been axorllt hor smute tinae tBe infrastructulre to quickly ant( cottviitcittgly ('-.lhah,
themi has beeit lack;ing. Robust, hAghNprawniamwie disn ibiuted compittring hardunae amid

software doesoti'tmake ' ou smarter. but, it idoes al wYou tol reach a little further anid 11/oH

colitid mtake ite( crucial differetnce.
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